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The Interference of Eddy Diffusion by Brownian Motion 
in Randomly Packed Beds 

P. B. M. ROES 
DELFT UNIVERSITY OF TECHNOLOGY 
DELFT, HOLLAND 

Abstract 

Some processes which are of interest in chromatography are discussed. One 
process is concerned with the progress of a sample layer of small particles in a 
fluid which passes very slowly through a vertical tube (column) filled with 
pebble-shaped beads. The mean and variance of the time for the particles to 
cover a certain distance are of particular interest as they may be used as a basis 
for chemical analysis of the sample. 

INTRODUCTION 

We will be concerned with the flow of a gas or liquid through a bed of 
regularly or irregularly shaped beads or pebbles which are packed in a 
random or nonrandom fashion. More specifically, we will study the 
movement of particles which are in  suspension in the moving fluid. We 
will not address ourselves to the problems which arise when the particles 
get attached to the beads through adsorption or otherwise and assume that 
only flow patterns and Brownian motion are relevant to the description of 
the movement of the particles. Eddy diffusion concerns the former: a 
particle may temporarily acquire a greater than average downstream 
velocity by following a relatively open pathway or, in contrast, it may be- 
come enmeshed in a restricted channel and lag behind. 

It was originally thought that the two causes of deviation from the 
average progress of particles as mentioned above acted independent of 
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288 ROES 

each other so that the total variance due to both would be the sum of the 
variances attributable to each. This did not check out with experiments. 
Giddings ( I ) ,  in his coupling theory of Eddy diffusion, however, in at- 
tempting a qualitative explanation of the phenomena observed, broke with 
the classical approach involving independence. In the following section we 
give a brief account of his theory, which we have stripped from detail, that 
is rather more relevant to the practical interpretation than to the mathe- 
matical description. 

From the outset it should be stipulated that we distinguish three effects 
that Brownian motion may have in  the present context. 

(1) It interrupts the relatively smooth if irregular flow known as Eddy 
diffusion by knocking particles about and displacing them from channels 
with low velocity to relatively open channels and vice versa. 

(2) Displacements in the direction of flow or contrary to that direction. 
These cause random discrepancies from the average progress; this phe- 
nomenon will be referred to as longitudinal diffusion. It will be assumed to 
be independent of effect ( l ) ,  although this is recognized to  be only partially 
correct since each time a particle is displaced as described in (1) the dis- 
placement will have a longitudinal component. 

(3) Displacements described under (2) will have the effect that the path 
to be covered will be either shorter or longer than without them, and as a 
consequence the particles will be exposed for different periods to the Eddy 
flow process. This effect is probably only of secondary importance and 
would require further investigation ; we will ignore it here completely. 

In the present paper we restrict the discussion to randomly packed beds, 
although in the second section following the model for a nonrandomly 
packed bed is indicated. The analysis of the latter would involve a Markov 
renewal process with four states, which requires rather more advanced 
tools [cf. Cinlar (2)]. 

GlDDlNGS COUPLING THEORY O F  EDDY DIFFUSION 

Consider the path of a particle in solution as it passes through a cylin- 
drical column of length L which is filled with small pebbles. The projec- 
tion of the path on the axis of the column is a straight line segment (0, L). 
Subdivide this line segment in segments of equal length S. Assume that in 
approximately half these the velocity of the particle is o + Au, and u - Au 
in the other ones. The probability that a particular segment is of a specific 
kind (i.e., with a flow-velocity of 2) + Au or u - Au) is one half. Due to 
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EDDY DIFFUSION AND BROWNIAN MOTION 289 

this random feature, the distance traveled at time t = L/u is a random 
variable. The variance of its distribution follows easily from the fact that 
the number k of segments traveling at speed u + Av has approximately a 
binomial distribution with, parameters p = 5 and n = L/S,  so that 
var k = npq = i n .  The distance traveled at t is approximately 

Av Av Av Av L + k--S - (n  - k)- = L - n-S + 2k-S 
V 11 V u 

The variance of this quantity is therefore 

Now consider two distinct such processes with 

u l 2  = n,02S12 and aZ2 = n 2 ~ 2 S 2 2  (2) 
where n l S l  = n2S2 = L, and further a third which is a combination of 
these two : 

o2 = nru2S2 (3) 

where n = n ,  + n2 and nS = L. The various variances are then related by 

Let the index 1 stand for the process due to flow variations (Eddy diffusion) 
in  the absence of Brownian motion and the index 2 stand for the process 
with speed variations caused exclusively by interruptions due to  Brownian 
motion. I t  is seen from Eq. (4) that the combined effect of Eddy diffusion 
and the interference by Brownian motion mentioned under (1) in the 
Introduction as measured by the variance tends to  assume the smaller of 
the two variances of the individual processes. In particular, if 02’ is 
extremely small, as will be the case in most practical situations when one 
deals with small molecular particles in suspension, 6’ will be nearly as 
small and the total variance as observed will almost be attributable in full 
to longitudinal diffusion. A drawback of Giddings’s approach is the choice 
of p = 4, because this limits its generality. 

DESCRIPTION OF T H E  M O D E L  AND D E F I N I T I O N S  

The model for the interference of Eddy diffusion by Brownian motion 
described in this section and analyzed in the next section with particular 
reference to the derivation of the resulting mean and variance has been 
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290 ROES 

constructed in analogy of Giddings’s approach and may be considered as a 
refinement. Consider a particle traveling along the L-axis. Initially, it is in 
the point L = 0 and has a velocity u in the positive direction. The length 
the particle will travel at this speed if no interruptions occur is a random 
variable v with distribution F. After the elapse of the length v, the speed 
becomes unity instantaneously and remains so for a length u with distribu- 
tion G. Subsequently the speed becomes v again and remains so for a 
random length, again sampled from the distribution F, and so on. This 
process is a tentative approximation of the Eddy diffusion process and is 
described under the name “alternating renewal process” in Cox (3).  While 
this process is proceeding, another process is operative independently. 
This is the Brownian motion interruption process described under (1) in 
the Introduction (longitudinal diffusion remains divorced from the 
discussion here altogether). This process interrupts the Eddy diffusion 
process in a Poisson fashion. To be more specific, interruptions occur at a 
rate 2 per unit length in a Poisson process while the speed of the particle is 
u ;  at the rate p while the speed is unity. When an interruption occurs, the 
speed of the particle may alter: the speed becomes u with probability p and 
unity with probability q = I - p ,  independent of the speed immediately 
before the interruption. The length v which i s  available initially for the 
particle to move uninterruptedly at speed u will be called the available 
length. The length actually covered uninterruptedly and at speed u is the 
minimum of v and the length up to first interruption (sampled from a 
negative exponential distribution with parameter L). The distribution of 
this minimum is therefore 1 - e-’”[l - F(x)]  for x 2 0. This distribution 
also applies following each time the velocity of the particle changes from 1 
to u due to expiration of the available length associated with unit speed. 
After the expiration of an available length associated with speed u, the 
velocity of the particle becomes unity and the distribution of the available 
length is G. The distribution of the length actually covered uninterruptedly 
and at unit speed after the expiration of an available length associated with 
speed ZI equals (by the same argument as before) 1 - e-px[l - G(x)] for 
x 2 0. 

We now arrive at a moot point in the description of the model, and it 
will turn out that this is the point where we distinguish between randomly 
packed beds and beds with regular features. The moot point concerns the 
distribution Fl of the available length after an interruption, following 
which the speed is u.  We assume that immediately after an interruption the 
particle is at an arbitrary point in the region where the flow velocity is v ;  
given that it is in this region. (We omit the consideration of up- or down- 
stream displacement; this is taken care of in longitudinal diffusion.) The 
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EDDY DIFFUSION AND BROWNIAN MOTION 291 

arbitrary point lies in an interval on the vertical through this point and 
along which the speed is D throughout. We tacitly assume that “interval” 
refers to the largest possible one with this property. Intervals along which 
the speed is z1 have the distribution F. The fact that an arbitrary point is 
contained in it, however, implies that we are concerned with an interval 
which is selected in a very special way. (We will now give an heuristic 
derivation of the distribution of this specially selected interval and of the 
distribution of the available length in this case. These distributions are 
known in renewal theory as those of an interval which covers an arbitrary 
point on the time axis and of the residual life time.) What is the probability 
that an arbitrary point in the region with velocity ti lies in an interval of 
length between x an x + dx? Obviously, the longer the interval, the more 
likely it will be chosen. More specifically, if an arbitrary point is to be 
contained in the interval, then the interval is chosen with probability 
proportional to its length. Intervals of length between x and x + dx occur 
with relative frequency dF(x) = F(x + dx) - F(x) [= f ( x )  dx if the 
derivativef(x) of F(x)  exists]. Therefore, the probability that an interval of 
length x between x and x + dx contains the arbitrary point is proportional 
to xdF(x).  Hence, its distribution is P(x < x} = aJGuclF(u), where a is 
determined by the fact that the distribution must be proper. This requires 
as; udF(u) = 1,  so that is the mean of F. In order to derive the 
distribution of the available length, in this case we note that the location of 
the arbitrary point is selected without preference on the interval and is 
therefore uniformly distributed over the full length of the interval. Finally 
then, we have for the distribution F ,  of the available length y, after an 
interruption which resulted in a displacement of the particle to an arbitrary 
point in the region with flow velocity u, that 

= - F ( x ) } d x  
0 

( 5 )  

where a-’  = fg  xdF(x). A similar argument applied to the available 
length associated with unit velocity after an interruption yields the fact that 
its distribution equals Gl(x) = big { 1 - G(u)}du for x 2 0, where 
b-’  = Jz xdC(x). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
2
1
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



292 ROES 

A natural question that comes to mind at this point is whether the 
distribution of the available length after an interruption can be equal to 
that of the available length after the expiration of the previous one. In 
terms of the distributions of available lengths associated with a speed u, 
this will be the case if F,  = F, so that Fmust be the solution of the integral 
equation F ( x )  = CIS; { 1 -- F(u)}du for x 3 0. This happens to be a charac- 
terization of the negative exponential distribution with parameter a if one 
further requires that solution to be a proper distribution of a nonnegative 
random variable as is easily seen on differentiating both sides of the 
equation. Analogously for available lengths associated with unit speed, 
G ,  = G,  if G(x) = 1 - e-bx for x > 0. Thus the distribution of an avail- 
able length after the expiration of a previous available length equals the 
distribution of an available length from an arbitrary point if F(x) = 
I - e-ax for x 2 0 and G(x) = I - ePhx for x 2 0. Accordingly, we 
define a bed as randomly packed if both F and G are negative exponential 
distributions. 

It would seem appropriate at the conclusion of this section to moderate 
some of the more categoric assertions made. Obviously, not each and every 
one of the interruptions of the Eddy diffusion by Brownian motion 
results in putting the particle in an arbitrary point. More often than not, 
the particle will not wander far from its immediate neighborhood. This can 
be taken care of, however, by taking somewhat lower values than the 
actual average number of displacements per unit length covered for the 
interruption rates I and p. More serious, of course, is the assumption that 
only two speeds are applicable under the present model and that changes 
occur instantaneously. The excuse here must be that these assumptions 
make the present model accessible for analysis and that one can only hope 
to obtain some feeling for the actual goings on by studying this admittedly 
crude model. Nevertheless we do have a particular application in mind in 
electrophoresis where the assumptions may be quite near to reality. 

ANALYSIS OF THE MODEL WITH A 
RANDOMLY PACKED BED 

In this section we will analyze the model in which the available lengths 
have an exponential distribution. We will concentrate on finding the 
distribution, the mean, and the variance of x,; the latter is the part of the 
path (0, L) of the particle which is covered at speed u.  That is, x, is the sum 
of the lengths of segments of the path in the interval (0, I,) which are 
traveled at velocity u.  

The path of a particle subject to Eddy diffusion with interference by 
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Brownian motion (but ignoring longitudinal diffusion) may be described 
by the random lengths v l ,  u,, v2, u2, vj, . . . of the consecutive segments of 
the path during which the speed is alternatingly v and unity. The families 
v , :  v 2 , .  . . and u,, u 2 , .  . . form two independent families of independent 
and identically distributed random variables. The distribution of a length 
v, covered at constant speed u is found from the following argument. 

Let the probability of the event that vi  exceeds y equal P(y) .  This event 
happens if one of two mutually exclusive events occurs. 

( I )  The available length x exceeds y ,  P{x > y }  = e - O y ,  and no inter- 
ruptions occur during coverage of the length y ;  the latter event has 
probability 

The first interruption occurs at a distance z from the commence- 
ment of vi, 0 < z < y ,  and before the available length x expires, while the 
interruption does not cause a change of speed, which happens with 
probability p,  and during passage from z to y no speed change occurs. The 
probability of the latter equals P ( y  - z ) ,  since at z the particle is again in 
an arbitrary point of the region where the velocity is u. These considera- 
tions lead for 11 > 0 to 

( 2 )  

J o  

which may be rearranged after a change of variable u = y - z to 

Differentiating both sides with respect to y,  we obtain a differential 
equation for P(y ) ,  the solution of which, satisfying P(0) = 1,  equals 
P ( y )  = C - ( " + ~ ' ) Y  for y 2 0. We conclude that the common distribution of 
the variables v l ,  v 2 , .  . . is a negative exponential with the parameter 
r = CI + qA. Similarly it follows that the common distribution of ul, 
u2, . . . is negative exponential with parameter s = b + pp .  

We are now in a position Lo derive the distribution of x,, the sum of the 
lengths of segments v,, v2, . . . inside the interval (0, L). It is easily seen 
that 

P { x ,  = L} = P{v, > L} = e-rL (6) 
For the calculation of the density of xL on the interval (0, L), we need the 
fact that the density of n independent random variables with common 
exponential distribution with parameter c is the gamma density c"x"-' 
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[(n - l)!]-'e-cx for x > 0 [cf. Feller (4)).  For 0 < x < L, the value of xL 
lies between x and x + dx if, for n = 1 ,  2, . . . , either 

(1) The particle surpasses the distance L in path segment u,, while 
n n -  1 

i =  1 i =  1 
x < ~ v i < x - i - d x ,  O t u <  c u i < u + d u < L - x ,  

u , > L - x - u .  

(2) The particle surpasses the distance L in path segment v,+ while 
n n 

L - x - ~ x <  ~ u ~ < L - x ,  O < U <  C V ~ < U + ~ U < . U ,  
V n + l  > x - u. 

i =  I i =  1 

Thus we obtain the density f of x L  for 0 < x < L as 
n - 2  

e-," du e - s ( L - x - u )  u e - r x S L - x  u = o  (n - 2)! 

a3 r n X n - l  

f(x) = c ____ 
, = I  (n - I ) !  

which may be expressed in terms of two modified Bessel functions of the 
first kind. As we are primarily interested in the mean and variance of x L ,  
we take transforms of Eqs. (6) and (7) 

m m 

(8) 
I . = O  

+ sp e-"- dL [a e-B"f(x) d.x 

I r n  
L = O  x = o  

sn- ' -. - - 
(a + /? + Y)"(c(  + s)" 

r" 
+ 

( u +  p + r Y + l ( a  + sy 
- u + r + s  

(a  + /? + r ) ( u  + s) - rs 
o r + r + s  

u2 + (/? + r + s)c1 + s 

- 

- - 
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Using the inversion formula for the Laplace transform and the Dirichlet 
integral [cf. Widder (5)], we have for E > 0 that 

dE 
'+IX (a + r + s)eaL 
' - i x ( a  - al)(a - cc,) 

= - lim 

I 
=- {(a1 + r + s)eaiL - 

a, - a 2  
(ccZ + r + s)eUzL} 

where 

and 

By differentiation of Eq. (9) with respect to /?, one rnn! obtain, after sonie 
tedious calculations, the first two moments of xL, from which the mean arid 
vaiance are found as 

E { X L }  = - SL + ~ r ( 1  - e - ( r + s ) L )  

r + s ( r  + s)' 

r 2  - 4rs 2rs - 2r(r - s) -- r 2  e-2 ( r+ .s )L  Var{xL} = +- 
(r + s ) ~  ( r  + s ) ~  ( r  + s ) ~  (r + s ) ~  

For large L, relative to a- ' ,  b-', (@)-I, and (p,u)-', replacing r and s 
again, it follows that 

In conclusion, before we discuss some of the implications of these 
results, we should emphasize the limitations under which they apply, in 
particular the restriction to only two possible flow velocities. 

Assuming, as we did in the preceding section, that after each Brownian 
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collision (interruption) the particle is left at a random point, the probability 
p that it is left in a region with flow velocity u equals 

p = a-*/(a- l  + b-1) = b/(u + b) 

If one further assumes that the interruption process is time homogeneous, 
that is, if the average number of interruptions per time unit is the same in 
both regions, those with flow velocity u and those with unit  velocity, then 
u/l = p. Under these assumptions one i s  led to the somewhat unexpected 
result that the mean total distance covered at speed v is dependent on the 
interruption rate 

i f A  = p u - l  (a + b)b + b v l  
E{xl-} = (a + h)2 + (a  + ho)l 

If, on the other hand, the interruption rates per unit length covered are 
equa!, the mean of xL is unaffected by Brownian motion and equals 
E{xL} = b/(a + 6) if A = p. 

Assumptions analogous to  those in the section entitled “Giddings 
Coupling Theory of Eddy Diffusion” are a = b, p = q, and R = p. It is 
seen from Eq. ( I  I )  that in  this case Eq. (4) holds good. As an indication of 
the sort of effect that may result from interference, Giddings’s approach is 
most successful. Thc simplicity of  Eq. (4), however, may be misleading in 
that it could suggest that all relevant information for the explanation of 
the interference phenomena is contained in the variances of the individual 
processes. 

An interesting situation is one where one of the interruption rates, I 
say, predominates. Under these circumstances the mean of xL approaches 
L and once again only the directly observable result of Brownian motion, 
longitudinal diffusion, will be noticeable in the variance. 

Finally, we note that usually the time t = xLu-I + L - xL it takes the 
particle to cover the full length 1; of the column will be the quantity that 
can be measured most easily and accurately. Its mean and variance equal 

E{t} = L + (1 - u ) u - ’ E { X L }  

var{t} = ( I  - Var{x,} 
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