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Abstract

Some processes which are of interest in chromatography are discussed. One
process is concerned with the progress of a sample layer of small particles in a
fluid which passes very slowly through a vertical tube (column) filled with
pebble-shaped beads. The mean and variance of the time for the particles to
cover a certain distance are of particular interest as they may be used as a basis
for chemical analysis of the sample.

INTRODUCTION

We will be concerned with the flow of a gas or liquid through a bed of
regularly or irregularly shaped beads or pebbles which are packed in a
random or nonrandom fashion. More specifically, we will study the
movement of particles which are in suspension in the moving fluid. We
will not address ourselves to the problems which arise when the particles
get attached to the beads through adsorption or otherwise and assume that
only flow patterns and Brownian motion are relevant to the description of
the movement of the particles. Eddy diffusion concerns the former: a
particle may temporarily acquire a greater than average downstream
velocity by following a relatively open pathway or, in contrast, it may be-
come enmeshed in a restricted channel and lag behind,

It was originally thought that the two causes of deviation from the
average progress of particles as mentioned above acted independent of
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each other so that the total variance due to both would be the sum of the
variances attributable to each. This did not check out with experiments.
Giddings (1), in his coupling theory of Eddy diffusion, however, in at-
tempting a qualitative explanation of the phenomena observed, broke with
the classical approach involving independence. In the following section we
give a brief account of his theory, which we have stripped from detail, that
is rather more relevant to the practical interpretation than to the mathe-
matical description.

From the outset it should be stipulated that we distinguish three effects
that Brownian motion may have in the present context.

(1) 1t interrupts the relatively smooth if irregular flow known as Eddy
diffusion by knocking particles about and displacing them from channels
with low velocity to relatively open channels and vice versa.

(2) Displacements in the direction of flow or contrary to that direction.
These cause random discrepancies from the average progress; this phe-
nomenon will be referred to as longitudinal diffusion. It will be assumed to
be independent of effect (1), although this is recognized to be only partially
correct since each time a particle is displaced as described in (1) the dis-
placement will have a longitudinal component.

(3) Displacements described under (2) will have the effect that the path
to be covered will be either shorter or longer than without them, and as a
consequence the particles will be exposed for different periods to the Eddy
flow process. This effect is probably only of secondary importance and
would require further investigation; we will ignore it here completely.

In the present paper we restrict the discussion to randomly packed beds,
although in the second section following the model for a nonrandomly
packed bed is indicated. The analysis of the latter would involve a Markov
renewal process with four states, which requires rather more advanced
tools [cf. Cinlar (2)].

GIDDINGS COUPLING THEORY OF EDDY DIFFUSION

Consider the path of a particle in solution as it passes through a cylin-
drical column of length L which is filled with small pebbles. The projec-
tion of the path on the axis of the column is a straight line segment (0, L).
Subdivide this line segment in segments of equal length S. Assume that in
approximately half these the velocity of the particle is v + Av,and v — Av
in the other ones. The probability that a particular segment is of a specific
kind (i.e., with a flow-velocity of v + Av or v — Av) is one half. Due to
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this random feature, the distance traveled at time ¢t = L/v is a random
variable. The variance of its distribution follows easily from the fact that
the number k of segments traveling at speed v + Av has approximately a
binomial distribution with parameters p =} and n = L/S, so that
var k = npg = }n. The distance traveled at ¢ is approximately

L+ké-'fS—(n—k)&= L—ngS+2kgS
v v v v
The variance of this gquantity is therefore
2 2
o = ln<2é93> = n<&> §? = nw*S*? 1)
4 v v
Now consider two distinct such processes with
6,2 = nw®S?  and  0,% = n,02S,? (2)

where n,S, = n,S, = L, and further a third which is a combination of
these two:

0% = nw?S? (3)

where n = n, + n, and nS = L. The various variances are then related by

- n n n — -
2 1 2__0.]2+0_22 (4)

=T T

Let the index 1 stand for the process due to flow variations (Eddy diffusion)
in the absence of Brownian motion and the index 2 stand for the process
with speed variations caused exclusively by interruptions due to Brownian
motion. It is seen from Eq. (4) that the combined effect of Eddy diffusion
and the interference by Brownian motion mentioned under (1) in the
Introduction as measured by the variance tends to assume the smaller of
the two variances of the individual processes. In particular, if ¢,% is
extremely small, as will be the case in most practical situations when one
deals with small molecular particles in suspension, o2 will be nearly as
small and the total variance as observed will almost be attributable in full
to longitudinal diffusion. A drawback of Giddings’s approach is the choice
of p = 1, because this limits its generality.

DESCRIPTION OF THE MODEL AND DEFINITIONS

The model for the interference of Eddy diffusion by Brownian motion
described in this section and analyzed in the next section with particular
reference to the derivation of the resulting mean and variance has been
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constructed in analogy of Giddings’s approach and may be considered as a
refinement. Consider a particle traveling along the L-axis. Initially, it is in
the point L = 0 and has a velocity v in the positive direction. The length
the particle will travel at this speed if no interruptions occur is a random
variable v with distribution F. After the elapse of the length v, the speed
becomes unity instantaneously and remains so for a length u with distribu-
tion G. Subsequently the speed becomes v again and remains so for a
random length, again sampled from the distribution F, and so on. This
process is a tentative approximation of the Eddy diffusion process and is
described under the name “alternating renewal process” in Cox (3). While
this process is proceeding, another process is operative independently.
This is the Brownian motion interruption process described under (1) in
the Introduction (longitudinal diffusion remains divorced from the
discussion here altogether). This process interrupts the Eddy diffusion
process in a Poisson fashion. To be more specific, interruptions occur at a
rate 4 per unit length in a Poisson process while the speed of the particle is
v; at the rate u while the speed is unity. When an interruption occurs, the
speed of the particle may alter: the speed becomes v with probability p and
unity with probability ¢ = 1 — p, independent of the speed immediately
before the interruption. The length v which is available initially for the
particle to move uninterruptedly at speed v will be called the available
length. The length actually covered uninterruptedly and at speed v is the
minimum of v and the length up to first interruption (sampled from a
negative exponential distribution with parameter ). The distribution of
this minimum is therefore 1 — e *[1 — F(x)] for x = 0. This distribution
also applies following each time the velocity of the particle changes from 1
to v due to expiration of the available length associated with wvnit speed.
After the expiration of an available length associated with speed v, the
velocity of the particle becomes unity and the distribution of the available
length is G. The distribution of the length actually covered uninterruptedly
and at unit speed after the expiration of an available length associated with
speed v equals (by the same argument as before) 1 — e ™[l — G(x)] for
x = 0.

We now arrive at a moot point in the description of the model, and it
will turn out that this is the point where we distinguish between randomly
packed beds and beds with regular features. The moot point concerns the
distribution F; of the available length after an interruption, following
which the speed is v. We assume that immediately after an interruption the
particle is at an arbitrary point in the region where the flow velocity is v;
given that it is in this region. (We omit the consideration of up- or down-
stream displacement; this is taken care of in longitudinal diffusion.) The
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arbitrary point lies in an interval on the vertical through this point and
along which the speed is v throughout. We tacitly assume that “interval®
refers to the largest possible one with this property. Intervals along which
the speed is v have the distribution F. The fact that an arbitrary point is
contained in it, however, implies that we are concerned with an interval
which is selected in a very special way. (We will now give an heuristic
derivation of the distribution of this specially selected interval and of the
distribution of the available length in this case. These distributions are
known in renewal theory as those of an interval which covers an arbitrary
point on the time axis and of the residual life time.) What is the probability
that an arbitrary point in the region with velocity v lies in an interval of
length between x an x + dx? Obviously, the longer the interval, the more
likely it will be chosen. More specifically, if an arbitrary point is to be
contained in the interval, then the interval is chosen with probability
proportional to its length. Intervals of length between x and x + dx occur
with relative frequency dF(x) = F(x + dx) — F(x) [= f(x)dx if the
derivative f(x) of F(x) exists]. Therefore, the probability that an interval of
length x between x and x + dx contains the arbitrary point is proportional
to xdf (x). Hence, its distribution is P{x < x} = a [§ udF(u), where a is
determined by the fact that the distribution must be proper. This requires
af§ udF(u) = 1, so that a~' is the mean of F. In order to derive the
distribution of the available length, in this case we note that the location of
the arbitrary point is selected without preference on the interval and is
therefore uniformly distributed over the full length of the interval. Finally
then, we have for the distribution F, of the available length y, after an
interruption which resulted in a displacement of the particle to an arbitrary
point in the region with flow velocity v, that

moo=my<n=jwmy<nx=xwmnw

i

0
y °°y

aj xdF(x) + a[ = xdF(x)
0 y X

Il

a@nw—ﬁHmW+y—ﬂw%
- af (1 = F)} dx (5)
Q

where a™' = ¥ xdF(x). A similar argument applied to the available
length associated with unit velocity after an interruption yields the fact that
its distribution equals G,(x) = bf5{l — G)}du for x =0, where
b7 = [§ xdG(x).
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A natural question that comes to mind at this point is whether the
distribution of the available length after an interruption can be equal to
that of the available length after the expiration of the previous one. In
terms of the distributions of available lengths associated with a speed v,
this will be the case if F; = F, so that F must be the solution of the integral
equation F(x) = afy {1 — F(u)}du for x > 0. This happens to be a charac-
terization of the negative exponential distribution with parameter a if one
further requires that solution to be a proper distribution of a nonnegative
random variable as is easily seen on differentiating both sides of the
equation. Analogously for available lengths associated with unit speed,
G, = G,if G(x) = 1 — e % for x > 0. Thus the distribution of an avail-
able length after the expiration of a previous available length equals the
distribution of an available length from an arbitrary point if F(x) =
1 —e ™ for x>0 and G(x) = 1 — e ™ for x = 0. Accordingly, we
define a bed as randomly packed if both F and G are negative exponential
distributions.

It would seem appropriate at the conclusion of this section to moderate
some of the more categoric assertions made. Obviously, not each and every
one of the interruptions of the Eddy diffusion by Brownian motion
results in putting the particle in an arbitrary point. More often than not,
the particle will not wander far from its immediate neighborhood. This can
be taken care of, however, by taking somewhat lower values than the
actual average number of displacements per unit length covered for the
interruption rates A and u. More serious, of course, is the assumption that
only two speeds are applicable under the present model and that changes
occur instantaneously. The excuse here must be that these assumptions
make the present model accessible for analysis and that one can only hope
to obtain some feeling for the actual goings on by studying this admittedly
crude model. Nevertheless we do have a particular application in mind in
electrophoresis where the assumptions may be quite near to reality.

ANALYSIS OF THE MODEL WITH A
RANDOMLY PACKED BED

In this section we will analyze the model in which the available lengths
have an exponential distribution. We will concentrate on finding the
distribution, the mean, and the variance of x, ; the latter is the part of the
path (0, L) of the particle which is covered at speed v. That is, x; is the sum
of the lengths of segments of the path in the interval (0, L) which are
traveled at velocity v.

The path of a particle subject to Eddy diffusion with interference by
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Brownian motion (but ignoring longitudinal diffusion) may be described
by the random lengths v, u,, v,, u,, v3, . . . of the consecutive segments of
the path during which the speed is alternatingly v and unity. The families
V,, V5, ...and u;, w,, ... form two independent families of independent
and identically distributed random variables. The distribution of a length
v, covered at constant speed v is found from the following argument.

Let the probability of the event that v, excecds y equal P(y). This event
happens if one of two mutually exclusive events occurs.

(1) The available length x exceeds y, P{x > y} = ¢~ ¥, and no inter-
ruptions occur during coverage of the length y; the latter event has
probability e~ %,

(2) The first interruption occurs at a distance z from the commence-
ment of v, 0 < z < y, and before the available length x expires, while the
interruption does not cause a change of speed, which happens with
probability p, and during passage from z to v no speed change occurs. The
probability of the latter equals P(y — z), since at z the particle is again in
an arbitrary point of the region where the velocity is v. These considera-
tions lead for y = 0 to

P{v, >y} = P(p) = e @ 4 p} J‘Z P(y — 2)e” P2 gz
which may be rearranged after a change of variable u = y — z to
P(y)et? = 1 4+ pa ﬁ P(u)e* P gy
Differentiating both sides with respect to y, we obtain a differential

equation for P(y), the solution of which, satisfying P(0) = 1, equals
P(y) = e~ @*9 for y > 0. We conclude that the common distribution of

the variables v;, v,,... is a negative exponential with the parameter
r = a + gA. Similarly it follows that the common distribution of u,,
u,, . .. is negative exponential with parameter s = b + ppu.

We are now in a position to derive the distribution of x,, the sum of the
lengths of segments v,, v,, ... inside the interval (0, L). It is easily seen
that

Pix, =L} = P{v, > L} = ™" (6)

For the calculation of the density of x; on the interval (0, L), we need the
fact that the density of » independent random variables with common
exponential distribution with parameter ¢ is the gamma density ¢"x"~!
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[(n — D!]" e for x > 0 [cf. Feller (4)]. For 0 < x < L, the value of X,
lies between x and x + dx if, forn = 1, 2, ..., either

(1) The particle surpasses the distance L in path segment u,, while
n—1

x<Yv<x+4+dx, O<u< Y w<u+du<L~—x,
=

i=1

u, > L —x—u
(2) The particle surpasses the distance L in path segment v, ;, while
n n
L-x—di<Yuw<L-—x O<u<Yv,<u+du<nx,
= i=1
Voar > X — U

Thus we obtain the density / of x; for 0 < x < L as

001 P 1 j\L—x —S(L—x- )Sn‘lun—z N )
—-rx s x-u s g 7
fx) = "Zx w =11 Juo® o (7)
n(L _ X)n i (L) e rnunvl _
5 x rix—u oy
+n21 (’7 - l)' ¢ u=067 (l’l e 1)'6’ “
_ 2] rnxn 1 n—l(‘L _ )n-1 —rx—s(L-x)

TS m=-D! (n =)
- n(L - .X)" ! rnx —s(L-x)—rx

+ Y2

n=1 n— ])' n!

which may be expressed in terms of two modified Bessel functions of the
first kind. As we are primarily interested in the mean and variance of x,,
we take transforms of Egs. (6) and (7)

[ e—aLE{e—ﬂxL}dL — j\L=o e—(a+ﬁ+r)L 4L (8)

JL=0

+r e—“LdLr e~ 2A(x) dx
0 x=0

L

l_ & re s
P -
a+f+r S+ B+ )+ s)

r’ s*
+(cx+[3+r)”“(oz+s)"}
B a+r+s
T A B+ s) —rs
_ a+r+s
S r+ BAr+ ot
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tUsing the inversion formula for the Laplace transform and the Dirichlet
integral [cf. Widder (5)], we have for ¢ > 0 that

je-l'ix (a +r+4 S)emL
e—ixaz + ()8 + r + S)(Z + Sﬂ
1, J"’“" (@ + 1 + )t
= — lim —_—
e—ix (OC - O(l)(OC - 0‘2)

Efe ™} = fim

TU x+ w0

©)

2mi x—= 0

1
= {tay + 7 + )™t — (o, + r + 5)e}
dy — %

where

o = oy(f) = —%(/3 +r +s)+-12-\/([3 +r+ 8?2 —4p

and

2

%y = i) = -—%([f +r 45+ %\/(ﬁ +r + 857 — 4sf

By differentiation of Eq. (9) with respect to f, one may obtain, after some
tedious calculations, the first two moments of x;, from which the mean and
vaiance are found as

sL r

E - LA § —(r+s)L
xc} r+s+(r+s)2( ¢ )

r? — 4rs + 2rs _ 2r(r — 3) _ r? —-2(r+9L

r+8* " (r+s)° r+sP (+3*

drs —(r+s)L
(r+ s)“e

Var{x,} =

For large L, relative to a~!, 671, (gA)~", and (pu)~*', replacing r and s
again, it follows that

_ b+ pu
Elxu} = a+ b+ qgh+pu (10)
Var{x,} = 2@+ a0 +pw) (1)

(@a+ b+ g\ + pw?

In conclusion, before we discuss some of the implications of these
results, we should emphasize the limitations under which they apply, in
particular the restriction to only two possible flow velocities.

Assuming, as we did in the preceding section, that after each Brownian
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collision (interruption) the particle is left at a random point, the probability
p that it is left in a region with flow velocity v equals

p=a'fla' +b7") = bl(a + b)

If one further assumes that the interruption process is time homogeneous,
that is, if the average number of interruptions per zime unit is the same in
both regions, those with flow velocity v and those with unit velocity, then
vd = u. Under these assumptions one is led to the somewhat unexpected
result that the mean total distance covered at speed v is dependent on the
interruption rate

(a + b)b + bvi

E{x,} = if4 = pot
M =T @ o

If, on the other hand, the interruption rates per unit length covered are
equal, the mean of x; is unaffected by Brownian motion and equals
E{x;} =blla+ b)if A = p.

Assumptions analogous to those in the section entitled “Giddings
Coupling Theory of Eddy Diffusion” are a = b, p = ¢, and A = u. It is
seen from Eq. (11) that in this case Eq. (4) holds good. As an indication of
the sort of effect that may result from interference, Giddings’s approach is
most successful. The simplicity of Eq. (4), however, may be misleading in
that it could suggest that all relevant information for the explanation of
the interference phenomena is contained in the variances of the individual
processes.

An interesting situation is one where one of the interruption rates, 4
say, predominates. Under these circumstances the mean of x, approaches
L and once again only the directly observable result of Brownian motion,
longitudinal diffusion, will be noticeable in the variance.

Finally, we note that usually the time t = x,v0 ' + L — x_ it takes the
particle to cover the full length L of the column will be the quantity that
can be measured most easily and accurately. Its mean and variance equal

Eity = L + (1 — o) "E{x;}
Var{t} = (I — v)®v~? Var{x,}
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